Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


大模型训练

2022年02月10日

简介

大模型:id 化导致模型变大,模型变大需要更多的数据才能收敛。

第一视角:深度学习框架这几年 作者深度参与了tf 等几个框架,对很多事情有独到的了解

什么是大模型

TensorFlow在推荐系统中的分布式训练优化实践随着美团业务的发展,推荐系统模型的规模和复杂度也在快速增长,具体表现如下:

  1. 训练数据:训练样本从到百亿增长到千亿,增长了近10倍。
  2. 稀疏参数:个数从几百到几千,也增长了近10倍;总参数量(也就是tf.Variable)从几亿增长到百亿,增长了10~20倍。
  3. 模型复杂度:越来越复杂,模型单步计算时间增长10倍以上。 对于大流量业务,一次训练实验,从几个小时增长到了几天,而此场景一次实验保持在1天之内是基本的需求

深度学习分布式训练的现状及未来大模型主要分为两类:

  1. 搜索、推荐、广告类任务,它的特点是海量样本及大规模稀疏参数(sparse embeddings),适合使用 CPU/GPU 参数服务器模式(PS);参数服务器模式从第一代 Alex Smola 在 2010 年提出的 LDA(文本挖掘领域的隐狄利克雷分配模型),到第二代 Jeff Dean 提出的 DistBelief,接着到第三代李沐提出的相对成熟的现代 Parameter Server 架构,再到后来的百花齐放:Uber 的 Horvod,阿里的 XDL、PAI,Meta 的 DLRM,字节的 BytePs、美团基于 Tensorlow 做的各种适配等等。参数服务器的功能日趋完善,性能也越来越强,有纯 CPU、纯 GPU,也有异构模式。
  2. CV、NLP 任务,它的特点是常规样本数据及大规模稠密参数,它适合用纯 GPU 集合通信模式(Collective)。基于纯 GPU 的集合通信模式的分布式训练框架,伴随着 Nvidia 的技术迭代,特别是 GPU 通信技术(GPU Direct RDMA)的进步,性能也变得愈来愈强。

广告推荐中大规模分布式模型 为啥一两百类的特征,我们却总是听说大规模特征?举个例子,用户 userid 这一维特征,比如系统中用户有1亿个,那么每个 id 实际上也可以当做一个独立的特征对待。这样一算,特征规模就上去了。这里就要重新理解 embedding 的概念了。对于模型而言,id 查了embedding表后得到向量,输入进来进行计算,是对数据进行抽特征。如果类比到图像分类,抽取 rgb 特征来分类 (一个值变成 3个255)

参数量卷到一百万亿!华人团队开源史上最大的推荐训练系统Persia 一般来说,推荐系统模型首先需要将不同的ID特征(如用户ID和session ID)映射到一个固定长度的低维向量,而系统中的用户ID、交叉特征数量都特别多,就需要更大规模的模型来捕获特征和映射。但更大规模的embedding layer也需要更大的内存来载入,不得不说大模型太费钱了!

有了embedding后,剩下的工作就简单了,设计后续layer来适配不同的任务。通常只占据整个模型的0.1%,无需大内存,主要是一些计算密集型的工作。

在实现上

  1. 推理服务在运行时 也会访问ps (distributed inference),根据 ID feature 查询对应的 embedding 向量。当然,有的框架直接将 ps 组件的功能内嵌到各个worker 上了。
  2. 针对 大模型 包含 embedding layer的场景,input 层和 embedding 层之间不是全连接的,而是一个 embedding_lookup 的Op
  3. 常规的dense 模型,input是一个一维向量。 针对多个id feature,为了 确保与模型的input 层对齐,input 实际变成了一个 map<string,tensor>,key 为id feature 名字,value 为id feature 值对应的 tensor。

大了难在哪

参数量卷到一百万亿!华人团队开源史上最大的推荐训练系统Persia模型训练时消耗的显存,往往是参数量的几倍还多

CV和NLP场景

浅谈工业界分布式训练(一) 除了上述的数据量级大,不同场景下分布式训练的痛点 对CV和NLP场景

  1. CV和NLP场景模型复杂,单机性能要求高,比如卷积的计算时间在CPU上和 GPU上相差十倍到几十倍。 ==> 业界主要使用高性能的GPU进行计算,并采用All-reduce的通信拓扑进行参数的同步更新。
  2. 模型大(DenseNet部分),比如NLP领域,GPT-3这样的模型高达1750亿参数,显存占用高达2.8 TB,单机内存无法容纳。而Bert-Large虽然只有3.4亿参数规模,但由于各种内存占用,在16G V100上,训练也仅能使用batch Size=8。 ==> 当面对GPT-3这种DenseNet部分大的模型,Allreduce 单卡内存无法容纳,我们需要采用模型并行(model parallelism)的方式将计算图划分到不同的设备上构建有向无环图(DAG)进行分布式训练,其中Gpipe, Megatron, Oneflow和Whale都提出模型并行的相关解决方案。相比于数据并行每个worker只有一部分数据,模型并行下每个node使用所有数据.
    1. Intra-layer parallelism(Tensor Parallelism) 。主要是将一层Layer中的矩阵计算分别拆分到不同的机器上进行运算,比如简单的Y_1=W_1 X_1这一次矩阵乘法中,我们将模型参数W_1或者输入数据X_1,按某个维度分别拆分到不同设备上计算,比如1D Megatron。
    2. Inter-layer parallelism(Pipeline Parallelism)。而Inter-Layer Parallism会将模型的layers拆分到不同的机器上,则一次forward就需要跨过不同的机器串行地进行运算,而流行并行通过将batch size切分为更小的mirco batch,减少数据依赖,从而将整个计算过程异步起来,最大化资源利用率。举例来说,在一个简单的三层MLP中(的Y_i = W_i X_i, i=1,2,3)会存在三次矩阵乘法 W_i X_i,流水线并行会把W_i X_i分别分配到三台机器上进行运算。

推广搜场景

  1. 模型小,词表大。模型中的DenseNet部分,不像BERT是模型巨大词表小,往往一台机器的内存就可以容纳,但是其特征量级可能高达成百上千亿,造成Sparsenet部分或者Embedding lookup table高达TB级别,使得单机无法容纳。
  2. 一个batch的embedding lookup量级大,造成查询耗时大。由于特征数量多,一个batch可能包含几十万个ID类特征,tf原生的embedding lookup查询耗时大,造成训练和inference性能低。尤其在线上inference的时候,无法在给定RT内完成服务响应。
  3. 数据具有大规模稀疏的特点。不同于CV和NLP场景,数据是稠密的图像和文本,搜广推的数据非常稀疏的,第一这来源于很多数据无法对所有用户和场景有效采集到,第二是因为建模使用的特征量级大造成的高维稀疏性。这会影响了数据的存储格式和计算效率。

TensorFlow在美团外卖推荐场景的GPU训练优化实践 推荐系统深度学习模型特点

  1. 读取样本量大:训练样本在几十TB~几百TB,而CV等场景通常在几百GB以内。
  2. 模型参数量大:同时有大规模稀疏参数和稠密参数,需要几百GB甚至上TB存储,而CV等场景模型主要是稠密参数,通常在几十GB以内。
  3. 模型计算复杂度相对低一些:推荐系统模型在GPU上单步执行只需要10~100ms,而CV模型在GPU上单步执行是100~500ms,NLP模型在GPU上单步执行是500ms~1s。 GPU服务器特点
  4. GPU卡算力很强,但显存仍有限:如果要充分发挥GPU算力,需要把GPU计算用到的各种数据提前放置到显存中。而从2016年~2020年,NVIDIA Tesla GPU卡计算能力提升了10倍以上,但显存大小只提升了3倍左右。
  5. 其它维度资源并不是很充足:相比GPU算力的提升速度,单机的CPU、网络带宽的增长速度较慢,如果遇到这两类资源负载较重的模型,将无法充分发挥GPU的能力,GPU服务器相比CPU服务器的性价比不会太高。

模型保存

基于tensorflow做扩展支持大模型的做法

  1. 在模型比较小的时候,比如100G以下,模型还有可能单机存储。这个时候的方案是tensorflow分布式训练+savedmodel,分布式训练可以用多个ps(tensorflow自带的),资源管理可以用yarn。用分布式是由于样本数大,同时多ps也能异步加速训练。saved_model一般由chief worker保存,但存下来以后,会抹掉ps的痕迹,保存的模型跟单机训练的一模一样。
  2. 当模型比较大的时候,这个时候要求的样本数也更大,训练完dump出来的模型会很大,一个单机放不下,尤其是embedding table。这个时候怎么办?一个自然的思路就是,把训练时候的ps拷贝同步一份给serving ps,线上由该ps做serving。注意后面谈到的serving ps,都是自己开发或者根据某个开源软件修改而成(比如ps-lite)。如果是天级模型,可以用tensorflow原生的worker和train ps,但依然用saved model方式把模型存放到hdfs,然后从hdfs读入另外一个serving ps。如果是实时训练,则serving ps还得跟训练ps进行实时的网络连接,在内存就解决掉weight同步的处理,这个时候就不能用tensorflow原生的ps了,因为原生的ps没有实现同步接口。ps变了,worker也得跟着变,worker大多数都是基于tensorflow的c++底层接口开发,底层用到tf的session接口。

解决思路

针对上述的问题,各个大厂的训练框架进行很多相关优化,目前总结下来,核心的两点,一个在于分布式通信拓扑的设计,还有一个在于Embedding Lookup的性能优化。

只要单卡放的下,走数据并行,ps 或allreduce 都行,allreduce 通信成本小一些。若规模变大

  1. 稀疏模型,稀疏参数特殊处理
    1. 使用ps,加上一些稀疏tensor 的优化,且将 embedding 存储和更新 负担转嫁到 ps
    2. 稠密参数allreduce,想办法解决 稀疏tensor 的存储、通信成本。 比如 HybridBackend架构中参数放在 worker 上:稠密参数 replication 存放,每个 worker 都有副本,梯度更新时进行 allreduce;稀疏参数 partition 存放,每个 worker 只有部分分片,梯度更新时进行 alltoall。allreduce 和 alltoall 都会使用 nccl 进行同步通信,效率较高。hb 进行 alltoall 时,通信的是稀疏梯度,而不是完整的参数,通信量上和 ps 是一致的,但是通信效率会更高。
  2. 稠密模型,单卡无论如何也放不下了,就只能采取模型并行 及附属的一些优化方案

知乎高赞回答——为什么说大模型训练很难?

  1. 算子拆分 单个矩阵乘法可以分到两个device上计算 Y = WX = [W1,W2]X = [W1X,W2X]。我们在工程上要做的就是:将切分到两个device上,将复制到两个device上,然后两个device分别做矩阵乘法即可。有的时候,切分会带来额外的通信,比如矩阵乘法切到了reduction维度上,为了保持语义正确,就必须再紧跟一个AllReduce通信。 这里复杂之处在于,你不能无脑地将所有算子全部做拆分,因为拆分可能会引入一些额外通信,降低总体吞吐。所以你得做些分析,决定哪些算子被拆分,现在大部分框架都不支持这种全自动化策略,要么是半自动或纯手工,要么是针对某种模型把它的拆分方案写死。所以只能造轮子解决这个事
  2. 流水并行 不切算子,而是将不同的Layer切分到不同的Device上,就可以形成Pipeline方案,GPipe就是这样一种方案,提出了将一个batch拆分成若干个micro-batch,依次推入到Pipeline系统中,即可消除Bubble time。和算子拆分类似,全自动化方案工作量不小,比如Pipeline怎么切,才能让通信量小,计算还能均匀,这需要一定的算法和工程量

搞定大模型训练

我们的模型可能会很大,或者数据量会很大。仅仅用一块GPU卡可能连模型都放不下,或者batch size只能设置的很小,但是我们知道有些情况下大的batch size往往会提供更好的效果。

  1. 假设我们只有一个GPU,我们的模型一次只能输入batch size为8的数据,那么我们怎么样实现batch size为32的更新呢?那就需要时间换空间了,即我们训练32/8=4步才去更新模型,也就是所谓的梯度累积。
  2. Gradient-Checkpointing, 那么如果你的GPU连batch size为1都跑不了怎么办?我们在训练深度学习模型的时候,需要先做前向传播,然后将中间得到的激活值存储在内存中,然后反向传播的时候再根据loss和激活值计算梯度。也就是说内存消耗其实跟模型的层数线性相关。那么怎么减少这个内存消耗呢?最简单的想法就是我不存这些中间信息,计算梯度的时候,到了某一层我重新计算它的激活值,这个方法虽然可以让内存消耗是个常量,但是运行时间会是O(n^2),这是没法接受的。那么就有一个折中的办法,我不存全部的中间数据,只存部分,那么我们在计算梯度的时候不需要从头计算了,只需要从最近的checkpoint点计算就好。
  3. 我们训练模型一般都是用单精度(FP32)的参数,但是其实我们还使用半精度(FP16)。半精度可以降低内存消耗,从而训练更大的模型或者使用更大的batch size;同时运算时间受内存和算术带宽的限制,在有些gpu(Tensor cores)上可以为半精度提供更大的算术带宽,从而提高训练效率,减少inference用时。