Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


AI云平台

2021年08月18日

简介

《人工智能云平台原理、设计与应用》近年来涌现了很多智能算法,这些算法需要软件的支撑,没有软件的支撑,理论很难与应用相结合,新硬件也很难为应用提速,所以巨头们推出了TensorFlow、Pytorch等开源框架,然而这些框架不足以支撑人工智能全流程生产化应用,它们仅面向个人开发者和研究人员,管理少数计算设备资源,无法在云计算资源上提供面向多租户的智能应用全流程服务。欠缺诸如海量样本数据管理与共享存储、集群管理、任务调度、快速训练与部署、运行时监控等能力,缺乏人工智能生产流程的抽象、定义和规范,导致用户形成生产力的成本过高。

海量数据标注 + 大规模计算 + 工程化(python或c++)=AI系统,也被称为MLaaS/MLOps。

AI 平台可能是云原生技术栈上最具”可玩性”的一种场景。种类繁多的异构资源和通讯形式、调度策略、常规业务不需要的拓扑感知、花式任务编排、数据密集型有状态应用、天然离/在线混部。

虎牙

互动直播场景下的AI基础设施建设

手动时代

AI平台的定位:面向算法工程师,围绕AI 模型的全生命周期去提供一个一站式的机器学习服务平台。

腾讯

高性能深度学习平台建设与解决业务问题实践构建公司统一的大规模算力,方便好用的提供GPU

阿里

KubeDL 加入 CNCF Sandbox,加速 AI 产业云原生化

从算法工程师着手设计第一层神经网络结构,到最终上线服务于真实的应用场景,除 AI 算法的研发外还需要大量基础架构层面的系统支持,包括数据收集和清理、分布式训练引擎、资源调度与编排、模型管理,推理服务调优,可观测等。众多系统组件的协同组成了完整的机器学习流水线。

具体的说

  1. 数据抽取组件->实现样本数据筛选
  2. 画像组件->实现样本数据与画像字段的关联
  3. 特征组件->实现画像数据到特征数据格式的转换
  4. 切分组件->实现样本抽样
  5. 深度组件->实现用户自定义模型训练
  6. 预测组件->验证模型指标
  7. 部署组件->模型部署上线
  8. 串联上述所有组件的工作流组件,以支持算法工程师 模型训练部署的整个过程。PS: 具体实现上设计到 自己实现或使用工作流引擎。 自动化能自动的,加速能加速的,减少模型耗时,加快算法工程师的产出效率,并以此为前提提高资源利用率。

摆脱 AI 生产“小作坊”:如何基于 Kubernetes 构建云原生 AI 平台在初期,用户利用 Kubernetes,Kubeflow,nvidia-docker 可以快速搭建 GPU 集群,以标准接口访问存储服务,自动实现 AI 作业调度和 GPU 资源分配,训练好的模型可以部署在集群中,这样基本实现了 AI 开发和生产流程。紧接着,用户对生产效率有了更高要求,也遇到更多问题。比如 GPU 利用率低,分布式训练扩展性差,作业无法弹性伸缩,训练数据访问慢,缺少数据集、模型和任务管理,无法方便获取实时日志、监控、可视化,模型发布缺乏质量和性能验证,上线后缺少服务化运维和治理手段,Kubernetes 和容器使用门槛高,用户体验不符合数据科学家的使用习惯,团队协作和共享困难,经常出现资源争抢,甚至数据安全问题等等。从根本上解决这些问题,AI 生产环境必然要从“单打独斗的小作坊”模式,向“资源池化+AI 工程平台化+多角色协作”模式升级。我们将云原生 AI 领域聚焦在两个核心场景:持续优化异构资源效率,和高效运行 AI 等异构工作负载。

  1. 优化异构资源效率
  2. 运行 AI 等异构工作负载,兼容 Tensorflow,Pytorch,Horovod,ONNX,Spark,Flink 等主流或者用户自有的各种计算引擎和运行时,统一运行各类异构工作负载流程,统一管理作业生命周期,统一调度任务工作流,保证任务规模和性能。一方面不断提升运行任务的性价比,另一方面持续改善开发运维体验和工程效率。

用户体验:对于数据科学家和算法工程师开发训练 AI 模型来说,Kubernetes 的语法和操作却是一种“负担”。他们更习惯在 Jupyter Notebook 等 IDE 中调试代码,使用命令行或者 Web 界面提交、管理训练任务。任务运行时的日志、监控、存储接入、GPU 资源分配和集群维护,最好都是内置的能力,使用工具就可以简单操作。因此要提供命令行工具/SDK/运维大盘/开发控制台来满足用户的各种需要。 AI 作业生命周期管理(Arena)

vivo

训练平台 + 推理平台 + 容器平台(日常维护cli ==> 白屏化)

一站式机器学习平台在 vivo AI 的实践

算力的易用性

  1. 分布式训练
  2. 交互式调试
  3. 容量托管
  4. 训练sdk

算力的灵活调度

  1. 基于容器的资源调度
  2. 在离线统一资源池
  3. 混合云 vivo AI 计算平台的 ACK 混合云实践
  4. 基于GPU 拓扑的调度

算力的高效利用

  1. 资源分配:弹性伸缩、算力超卖(多个容器使用一张卡,GPU隔离)
  2. 资源使用:训练/推理加速,训练容错
  3. 弹性训练 vivo AI 计算平台弹性分布式训练的探索和实践
  4. 训练性能剖析
  5. GPU 远程调用
  6. 数据编排和加速

vivo推荐中台升级路:机器成本节约75%,迭代周期低至分钟级玲珑·推荐中台主要为数据及算法工程师提供从算法策略到 A/B 实验的工程架构解决方案、通用的特征服务和样本生产服务、模型的离线训练到上线部署全生命周期管理、高性能推理等能力。玲珑·推荐中台包含四大模块:推荐中心、特征中心、模型中心、端云协同推荐。

具体一点

腾讯

腾讯般若系统

美团

美团外卖特征平台的建设与实践

其它

深度学习平台的搭建,将遇到诸多挑战,主要体现在以下方面:

  1. 数据管理自动化。在深度学习的业务场景中,从业人员会花费大量的时间获取和转换建立模型需要的数据。数据处理过程中还将产生新的数据,这些数据不单单应用于本次训练,很可能用于后续推理过程。并且新 生成的数据不需要传给数据源,而是希望放置在新的存储空间。这需要基础平台提供可扩展的存储系统。PS: 手动命令行、页面、代码上传、下载,pod 随时可以访问,分布式训练任务多pod 之间也要共享一些临时的存储文件。 AI 数据编排与加速(Fluid)
  2. 资源的有效利用。深度学习相关的应用是资源密集型,资源使用波动大,存在峰值和谷值。在应用开始运行的时候,快速获取计算资源;在应用结束后,回收不适用的计算资源对于资源利用率的提升相当重要。数据处理、模型训练和推理所使用的计算资源类型和资源占用时间有所不同,这就需要计算平台提供弹性的资源供应机制。
  3. 屏蔽底层技术的复杂性

如何跟公有云协同 vivo AI 计算平台的 ACK 混合云实践

AI 中台具备六大能力。

  1. 统一的存储空间,支持多数据源导入。
  2. Pipeline 可视化工作流管理与执行,支持数据科学家从数据建模阶段开始的可视化管理,节省成本,快速体现数据科学家的价值。深入探索云原生流水线的架构设计
  3. 基于容器的计算资源分配和软件库安装,支持 TensorFlow、PyTorch 等各种框架。
  4. 支持 GPU、TPU、CPU 框架和基于异构计算的模型管理。
  5. 模型管理,支持新手快速上手,无需通过自己实现原始算法,只需要理解算法原理就可以通过调参实现。
  6. AI Serving,模型一键封装为 API,一键部署。

深入探索云原生流水线的架构设计

  1. 在 Pipeline 中,我们对一个任务执行的抽象是 ActionExecutor。一个执行器只要实现单个任务的创建、启动、更新、状态查询、删除等基础方法,就可以注册成为一个 ActionExecutor。
    1. Engine 层负责流水线的推进,包括:Queue Manager 队列管理器,支持队列内工作流的优先级动态调整、资源检查、依赖检查等。Dispatcher 任务分发器,用于将满足出队条件的流水线分发给合适的 Worker 进行推进。Reconciler 协调器,负责将一条完整的流水线解析为 DAG 结构后进行推进,直至终态。
    2. 模块内部使用插件机制,对接各种任务运行时。
  2. 在一条流水线中,节点间除了有依赖顺序之外,一定会有数据传递的需求。上下文传递,后置任务可以引用前置任务的“值”和“文件”
  3. Pipeline 之所以好用,是因为它提供了灵活一致的流程编排能力,并且可以很方便地对接其他单任务执行平台,这个平台本身不需要有流程编排的能力。调度时,根据任务类型智能调度到对应的任务执行器上,包括 K8sJob、Metronome Job、Flink Job、Spark Job 等等。
  4. 这里简单列举一些比较常见的功能特性:
    1. 配置即代码
    2. 扩展市场丰富
    3. 可视化编辑
    4. 支持嵌套流水线
    5. 灵活的执行策略,支持 OnPush / OnMerge 等触发策略
    6. 支持工作流优先队列
    7. 多维度的重试机制
    8. 定时流水线及定时补偿功能
    9. 动态配置,支持“值”和“文件”两种类型,均支持加密存储,确保数据安全性
    10. 上下文传递,后置任务可以引用前置任务的“值”和“文件”
    11. 开放的 OpenAPI 接口,方便第三方系统快速接入