Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


kubernetes yaml配置

2018年11月04日

简介

Kubernetes 跟 Docker 等很多项目最大的不同,就在于它不推荐你使用命令行的方式直接运行容器(虽然 kubectl run 支持),而是采用yaml/json 文件的方式。最直接的好处是,你会有一个文件能记录下 Kubernetes到底“run”了什么。使用文件的优点归纳起来

  1. Convenience,比如kubectl create -f https://k8s.io/examples/application/deployment.yaml --record 命令行可这样玩不了
  2. Maintenance, 比如使用git 管理
  3. Flexibility,也就是说表达能力更强

简化 Kubernetes Yaml 文件创建由于Yaml文件格式比较复杂,即使是老司机有时也不免会犯错或需要查询文档,因此可以dry-run 一下,kubectl run myapp --image=nginx --dry-run -o yaml 会输出模拟运行 nginx 镜像的yaml 文件内容,copy-paste 即可。或者你可以 kubectl get deployment my-nginx -o yaml 查看一个已有 kubernetes object 的配置,依葫芦画瓢。

了解kubernetes yaml 主要从两个维度:

  1. yaml 文件的普遍特征
  2. Kubernetes Object 的共同特征

yaml 的一些知识

Introduction to YAML: Creating a Kubernetes deployment

  1. YAML, which stands for Yet Another Markup Language,yaml 是一个标记语言
  2. YAML is a superset of JSON, yaml 是json 的超集
  3. there are only two types of structures you need to know about in YAML:

    • Lists
    • Maps

yaml Maps

apiVersion: v1
kind: Pod
metadata:
  name: rss-site
  labels:
    app: web
  1. Maps let you associate name-value pairs
  2. 只要“平行/级”,就是同一个层级的key-value。有了缩进,就表示一个map value。层级之间缩进空格数任意,哪怕一个空格也可以,但不要使用tab。 For example, name and labels are at the same indentation level, so the processor knows they’re both part of the same map; it knows that app is a value for labels because it’s indented further.

yaml list

args
  - sleep
  - "1000"
  - message
  - "Bring back Firefly!"

you can have virtually any number of items in a list, which is defined as items that start with a dash (-) indented from the parent.

Describing a Kubernetes Object

Understanding Kubernetes Objects

Kubernetes Object

Kubernetes Objects are persistent entities in the Kubernetes system. A Kubernetes object is a “record of intent”–once you create the object, the Kubernetes system will constantly work to ensure that object exists.

  1. What containerized applications are running (and on which nodes)
  2. The resources available to those applications
  3. The policies around how those applications behave, such as restart policies, upgrades, and fault-tolerance

Every Kubernetes object includes two nested object fields that govern the object’s configuration: the object spec and the object status.

  1. The spec, which you must provide, describes your desired state
  2. The status describes the actual state of the object, and is supplied and updated by the Kubernetes system. pod 状态可以使用 kubectl get pod pod_name -o yaml 来查看,或者 kubectl describe pod pod_name

At any given time, the Kubernetes Control Plane actively manages an object’s actual state to match the desired state you supplied. 基于这种机制 不管是kubectl create -f 还是 kubectl replace -f 都可以是 kubectl apply -f,这或许也是kubernetes 声明式api 的一个体现吧。

yaml 配置共同点

  1. apiVersion - Which version of the Kubernetes API you’re using to create this object
  2. kind - What kind of object you want to create
  3. metadata - Data that helps uniquely identify the object, including a name string, UID, and optional namespace
  4. spec - The precise format of the object spec is different for every Kubernetes object, and contains nested fields specific to that object. 每一个 Kubernetes object 就得参见 Kubernetes API Reference

metadata 与 spec 分别代表了 共性与个性,数据表设计也可以参照这个思路

metadata 中包含Label 和 Annotation,作用差不多,但有两个区别

  1. k8s 支持根据 label 对object 进行检索, Annotation 不行
  2. 因为label 需要支持检索,所以label 只能是kv 结构,Annotation value 可以是复杂一点,比如json 字符串

PodPreset

开发人员习惯的写的,是最简单的pod

apiVersion: v1
kind: Pod
metadata: 
	name: website 
	labels:
		app: website 
		role: frontend
spec: 
	containers: 
		- name:website 
		  image: nginx
		  ports: 
			- containerPort:80

但对运维来说,在实际环境中还需添加大量的配置,此时,运维可以事先定义一个PodPreset.yaml,并创建一个PodPresetkubectl create -f preset.yaml。 之后开发创建的pod(有一个规则匹配) 都会自动加上 preset.yaml 指定的配置。

访问多个kubernetes 集群

  1. 一般情况,kubernetes 单独搭建在一个集群上,开发者通过开发机 或某一个跳板机上 通过kubectl 操作kubernetes,kubectl 会读取~/.kube/config 文件读取集群信息
  2. kubernetes 一般会有多个集群:测试环境(运行公司测试环境的服务),开发环境(用来验证新功能)==> developer 需要在本机 上使用kubectl 访问多个k8s集群

配置对多集群的访问

~/.kube/config 是一个yaml 文件,可以配置多个集群的信息

apiVersion: v1
kind: Config
clusters:
users:
contexts:

可以看到 几个核心配置都是数组

apiVersion: v1
kind: Config
clusters:
- cluster:
name: development
- cluster:
name: scratch
users:
- name: developer
- name: experimenter
contexts:
- context:
    cluster: development
    user: developer
  name: dev-frontend
name: dev-frontend
- context:
    cluster: scratch
    user: experimenter
  name: exp-scratch