Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


《mysql技术内幕》笔记

2017年10月31日

简介

《mysql技术内幕》 主要讲存储引擎部分。

基本架构

查询缓存:key 是查询的语句,value 是查询的结果。如果你的查询能够直接在这个缓存中找到 key,那么这个 value 就会被直接返回给客户端。大多数情况下我会建议你不要使用查询缓存,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。对于更新压力大的数据库来说,查询缓存的命中率会非常低。除非你的业务就是有一张静态表,很长时间才会更新一次。MySQL 8.0 版本直接将查询缓存的整块功能删掉了。

crash-safe 能力:保证即使数据库发生异常重启,之前提交的记录都不会丢失。日志系统

  1. Server层日志/binlog。最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。
  2. 存储引擎层日志。当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面。redo log 是固定大小的,如果redo log 写满了(write ops-checkpoint),就不能再执行更新操作了,得停下来将内存数据写到磁盘(把checkpoint 推进一下)。
  redo log binlog
层次 InnoDB 引擎特有的 Server 层实现
内容 物理日志
记录的是“在某个数据页上做了什么修改”
逻辑日志
记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1”
写的方式 循环写
空间固定会用完
追加写
写到一定大小后会切换到下一个,并不会覆盖以前的日志

API

存储引擎 API以Handler类的虚函数的方式存在,可在代码库下的sql/handler.h中查看详细信息

class handler : public Sql_alloc{
    ...
    // 创建、打开和关闭表
    int create(const char *name, TABLE *form, HA_CREATE_INFO *info);
    int open(const char *name, int mode, int test_if_locked);
    int close(void);
    virtual int rnd_init (bool scan);   //初始化全表扫描
    virtual int rnd_next (byte* buf);   //从表中读取下一行
    virtual int rnd_pos(uchar *buf, uchar *pos);    // 读取pos 的数据,一般用于读取字段
    // 索引操作
    int ha_foo::index_init(uint keynr, bool sorted) //使用索引前调用该方法
    int ha_foo::index_end(uint keynr, bool sorted)  //使用索引后调用该方法
    int ha_index_first(uchar * buf);                //读取索引第一条内容
    int ha_index_next(uchar * buf);                 //读取索引下一条内容
    int ha_index_prev(uchar * buf);                 //读取索引前一条内容
    int ha_index_last(uchar * buf);                 //读取索引最后一条内容
    int index_read(uchar * buf, const uchar * key, uint key_len,
            enum ha_rkey_function find_flag)        //给定一个key基于索引读取内容
    // 事务操作
    int my_handler::start_stmt(THD *thd, thr_lock_type lock_type)   //开始一个事务
    int (*rollback)(THD *thd, bool all);                            //回滚一个事务
    int (*commit)(THD *thd, bool all);                              //提交一个事务
    // 对表加锁
    int ha_example::external_lock(THD *thd, int lock_type)  // 当客户端调用LOCK TABLE时,通过external_lock函数加锁:
}

磁盘文件

内存管理系统将内存条编址,对每个进程看到的都是0~n。文件系统相当于将离散的磁盘存储空间编址,对每个文件看到的都是0~n。当然,进程根据进程号查找就可以,文件要根据文件名查找,因此多了一些结构。

我们常说逻辑结构、物理/存储结构

  1. 存储结构是扁平的,一个文件/对象/实体的数据或连续或分散,能从offset 0到结尾找到就行。存在磁盘上通常有一定的文件格式rm、mp3,一般分为文件header和body两个部分。存在内存时,真应该也定一个数据格式。
  2. 逻辑结构,逻辑结构通常不是扁平的,能够承载一定的抽象概念。比如此处的innodb存储引擎文件,物理上就是一个个页连续构成,offset 0~16kb是第一个页(假设一个页大小16kb),接着第二个页等。但页有系统页、数据页,页上有共同的segment id,那么就有了段的概念,段的功能有又不同,最终组成了一个复杂的结构。

物理结构

假设一个表,一个表空间文件,表名test,对应文件test.ibd,ibd就是一个文件格式,有专门的工具解析,跟rm、mp3性质上一样一样的。

首先test.ibd 被划分为一个个页,每个页有不同的功能

每个页从offset 0到结束,有一定的格式约定。页有一个重要组成部分是行记录

行记录从offset 0到结束,有一定的格式约定。

逻辑结构

B+树数据库加锁历史在磁盘数据库中,数据组织方式的王者非B+树莫属,而且已经半个世纪有余。通过多叉树的方式,实现从单个节点中索引大量子树。从而大大降低了整个树高,将二叉树中大量的随机访问转化为顺序访问,减少磁盘寻道,完美契合了磁盘顺序访问性能远好于随机访问的特性,以及其块设备接口。BTree在结构上有大量变种,B+Tree所有的数据信息都只存在于叶子节点,中间的非叶子节点只用来存储索引信息,这种选择进一步的增加了中间节点的索引效率,使得内存可以缓存尽可能多的索引信息,减少磁盘访问;除根节点以外,每个节点的键值对个数需要介于M/2和M之间,超过或者不足需要做分裂或者合并。

数据部分,将一个B+Tree存在一个文件里一个个连续摆放的页上。

表空间 ==> 段 ==> 区 ==> 页。

体现在文件上,就是一个个页(看不出来段和区)。页按大小划分,这样根据页号*大小就知道页的地址。区也固定大小,分为多个页,区大小/页大小=区内页的数量。页大小可调,区大小不可调,通过两个大小维度实现固定与灵活有机统一吧。段则界定了页数据的性质,有点类似内存管理的段页机制。

数据库的并发安全

本文是innodb的读书笔记,更宏观的看待并发问题请参考腾讯云李海翔:数据库的并发控制技术深度探索基本要点:

  1. 数据库一共会发生11种异常现象,脏读、不可重复读、幻读只是其中三种。
  2. 主流的并发控制技术

    • 两阶段锁
    • 基于时间戳
    • 基于有效性检查
    • MVCC,常与其它技术一起使用
    • SCO

所谓并发控制技术就是抑制并发,或者发现数据异常并处理。 使各种共享资源在被并发访问变得有序所设计的一种规则。

一个线上SQL死锁异常分析:深入了解事务和锁为了控制事务并发时的数据安全,在不同隔离级别下会通过不同的协同机制进行处理。传统隔离机制,完全由锁(LBCC)来处理,但是这样只能满足读读并发,会对性能造成很大影响,故而出现了支持读写并发的MVCC。

《软件架构设计》软件并发问题其实就是读写、写写冲突问题,读写冲突又可以细分为快照读与写冲突、当前读与写冲突。

并发冲突 处理办法 示例
读读 无冲突  
快照读与写 copyOnWrite/MVCC select xx from xx
当前读与写 加锁,但锁有强弱(互斥、读写),粒度有大小(表、行、范围),锁住的对象有不同(索引、数据行)
可以根据容忍的读错误类型加不同的锁
select xx for udpate
select xx in share mode
写写 加锁  

db 锁并不直接对 开发暴露,锁用于支持实现不同的事务的隔离性强度(有讨论价值的主要是RR和RC),加锁情况太多,容易晕。举个例子感受下事务和锁的关系

  1. 聚簇索引(查询命中,存在id=15) UPDATE students SET score = 100 WHERE id = 15;,RC、RR都是对聚簇索引加X锁。未命中(存在id=16),RC不加锁,RR在16之前和之后的范围里加GAP锁。
  2. 二级唯一索引(查询命中,存在no=S0003),UPDATE students SET score = 100 WHERE no = 'S0003',RC、RR会对二级和聚簇索引都加X锁(防止其他事务通过聚簇改数据)。未命中,RC不加锁,RR只在二级索引加GAP锁。

锁的实现

《MySQL实战45讲》MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类

  1. 全局锁,对整个数据库实例加锁,命令是flush tables with read lock,释放全局锁命令unlock tables,典型使用场景是:做全库逻辑备份
  2. 表级锁
    1. 表锁,表锁的语法是 lock tables … read/write,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。
    2. 元数据锁,不需要显式使用,在访问一个表的时候会被自动加上。在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。
  3. 行锁就是针对数据表中行记录的锁。在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。因此,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。

书中提到,在数据库中,锁有lock和latch,一般业务开发熟悉的锁对应的是latch,简单区别如下:

  对象 保护 持续时间 存在于
lock 事务 表、页、行 整个事务过程 lock manager的哈希表中
latch 线程 内存数据结构 很短 被保护的数据结构中

比如在java中,一个object内存结构就相应有锁的标记位,意味着任何一个object都有可能被竞争访问,如果object已经被锁住(标记位是某个值),则线程会被挂起。

其实,锁的标记信息存储在被保护的数据结构上还是独立集中管理,都是一样的。

  1. 在操作系统中,一个文件在磁盘上的存在形式是一个个磁盘块,在内存中的存在形式除了磁盘块载入内存的缓冲块外,还有一个文件表,表中的文件结构体有锁的标志位。文件是否被某个线程独占,并不属于文件的内容信息,存入磁盘中是不恰当的。如果锁的信息存入磁盘块对应的缓冲块,则破坏了缓冲块与磁盘块的直接对应关系。
  2. 每个数据结构保有锁的标记信息有一个好处,即语言层面简化锁的使用,比如java的synchronized关键字, 比lock unlock方便多了。

上层应用开发会加各种锁,有些锁是隐式的,数据库会主动加(比如update),有些锁是显式的,比如select xx for update。 因为开发的使用不当,数据库会发生死锁,就像jvm 也会死锁一样。作为数据库,必须有机制检测出死锁(判断一个有向图是否存在环),并解决死锁问题,比如强制让其中某个事务回滚,释放锁。

其它

change buffer 对更新的加速(尤其是适用于写多读少的业务):当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB 会将这些更新操作缓存在 change buffer 中,这样就不需要从磁盘中读入这个数据页了(写时不用读磁盘,直到读数据时才读磁盘)。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了访问这个数据页会触发 merge 外,系统有后台线程会定期 merge。在数据库正常关闭(shutdown)的过程中,也会执行 merge 操作。

如果要简单地对比redo log和change buffer 在提升更新性能上的收益的话,redo log 主要节省的是随机写磁盘的 IO 消耗(转成顺序写),而 change buffer 主要节省的则是随机读磁盘的 IO 消耗(避免更新时读取)。PS:redo log主要是为了crash-safe的

互联网分层架构的本质 想到的数据在不同介质的表现形式,以mysql innodb存储引擎为例

  表现形式
业务系统 一个数据对象
java对象在内存 参见java对象内存模型
mysql逻辑上 一行记录
mysql一行记录在内存 例如compact、redundant等行记录格式
mysql一页记录在内存 例如antelope、barracuda等格式
mysql一页记录在文件系统 假设页大小16kb,内存数据整体复制到磁盘,地址范围page offset ~ page offset + 16kb
mysql表数据在硬盘 假设启动innodb_file_per_table,对应一个xx.ibd文件
一个文件在操作系统 file id
一个文件在磁盘 几个磁盘块 + 部分inode块

上层抹不去的底层印记。磁盘天然的随机读写慢于顺序读写,迫使os、mysql进行了大量的缓冲优化。