Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


openkruise学习

2021年01月16日

简介

把 k8s 比喻为京东网站,提供的是平台的能力,Openkruise 可以看做是在京东开的第三方店铺。 站在平台层面,Deployment和CloneSet 都是店家,共同享用平台的基础能力。

Kubernetes的价值与不足

docker 让镜像和容器融合在一起,docker run 扣动扳机,实现镜像到 容器的转变。但docker run 仍然有太多要表述的,比如docker run的各种参数: 资源、网络、存储等,“一个容器一个服务”本身也不够反应应用的复杂性(或者 说还需要额外的信息 描述容器之间的关系,比如--link)。

我们学习linux的时候,知道linux 提供了一种抽象:一切皆文件。没有人会质疑基本单元为何是文件不是磁盘块?linux 还提供了一种抽象叫“进程”,没有人会好奇为何 linux 不让你直接操纵cpu 和 内存。一个复杂的系统,最终会在某个层面收敛起来,就好像一个web系统,搞到最后就是一系列object 的crud。类似的,如果我们要实现一个“集群操作系统”,容器的粒度未免太小。也就是说,镜像和容器之间仍然有鸿沟要去填平?kubernetes 叫pod,marathon叫Application,中文名统一叫“应用”。在这里,应用是一组容器的有机组 合,同时也包括了应用运行所需的网络、存储的需求的描述。而像这样一个“描述” 应用的 YAML 文件,放在 etcd 里存起来,然后通过控制器模型驱动整个基础设施的 状态不断地向用户声明的状态逼近,就是 Kubernetes 的核心工作原理了。“有了 Pod 和容 器设计模式,我们的应用基础设施才能够与应用(而不是容器)进行交互和响应的能力,实现了“云”与“应用”的直接对接。而有了声明式 API,我们的应用基础而设施才能真正同下层资源、调度、编排、网络、存储等云的细节与逻辑解耦”。

解读容器的 2020:寻找云原生的下一站面向终态的声明式 API 与其背后“辛勤”工作的控制器,为“构建基础设施层抽象”这个充满了挑战的技术难题,提供了一个能够在复杂度与可用性之间取得平衡的解决方案。但k8s 也并不完美。在绝大多数情况下,企业基于 Kubernetes 构建上层平台,都会引入各种各样其他的抽象作为补充,甚至取代或者隐藏掉 Kubernetes 的部分内置抽象:阿里巴巴开源的 CloneSet,腾讯的 GameStatefulSet 实践等扩展型工作负载等都是这个趋势的最好的案例。今天能够基于 Kubernetes 成体系构建出完整上层平台的团队,其实集中在一、二线大型互联网公司当中,并且其实践往往“仅供参考”,鲜有可复制性。

事实上,平台构建者之所以要基于 Kubernetes 进一步构建上层平台,其根本动机无非来自两个诉求:

  1. 更高的抽象维度:比如,用户希望操作的概念是“应用”和“灰度发布”,而不是“容器”和“Pod”;大家为 Kubernetes 构建的各种 Dashboard,其实就是一种“抽象”的实现方式:这些 Dashboard 本质上是在 Kubernetes API 对象的基础上暴露出了一组允许用户填写的字段,从而实现了‘’简化用户使用心智、提升用户体验‘’的目的
  2. 更多的扩展能力:比如,用户希望的应用灰度发布策略是基于“双 Deployment + Istio” 的金丝雀发布,而不是 Kubernetes 默认的 Pod 线性滚动升级。这些增强或者扩展能力,在 Kubernetes 中一般是以 CRD + Controller 的插件方式来实现的。Kubernetes将下层的容器运行时(Container Runtime)封装得太严实。Runtime 层的容器创建只有一个 Pod 资源,此外没有任何接口可以让用户能够通过 Kubernetes API 层面来执行一些 Runtime 相关操作,比如拉取镜像、重启容器等,但这些都是来自业务场景的现实诉求。

在云原生与 Kubernetes 项目极大程度的统一与标准化了基础设施层抽象之后,如何进一步帮助平台团队在此之上快速、轻松、可复制的构建上层平台,正在成为业界开始积极思考的一条关键路径。

KubeVela:标准化的云原生平台构建引擎

随着我们对 K8s 的使用程度越来越深,会发现 K8s 面向 “工作负载” 的设计在一些场景下是需要提升的。围绕着这些问题的焦点,社区不断地在为 K8s 进行插件式的扩展。CNCF Landscape 中已有接近 400 个开源产品为 K8s 提供了额外能力,这些技术方向大致被分为了数据库、消息、应用定义和镜像构建等,产品数量仍然不断上升。

对kubernetes 的扩展

如何基于 OpenKruise 打破原生 Kubernetes 中的容器运行时操作局限?

  1. Kubernetes 的 API 层面限制了用户只能创建或删除 Pod ,除此之外,里面的容器只能做 Exec, Log 这样的操作。在 Kubernetes 接口层面,用户无法进行比如拉取镜像、重启容器等操作。
  2. CRI 的职责是对容器运行时以及对镜像做相关的管理,包括对容器的启停操作,对 Sandbox 容器的操作,容器 States 的数据采集,以及镜像的拉取和查询等操作。因此,CRI 提供了比较完善的容器接口
  3. Kubelet 目前没有提供任何 hook 解决 plugin 的这个操作,来让外层能去动态拓展 Kubelet 所做的事情。那是否可以加入一个与 Kubelet 类似的新组件,可以连接到 CRI API,来拓展 Kubernetes 容器进行时的操作呢?

代码结构

Kruise 控制器分类指引Controller 命名惯例

  1. Set 后缀:这类 controller 会直接操作和管理 Pod,比如 CloneSet, ReplicaSet, SidecarSet 等。它们提供了 Pod 维度的多种部署、发布策略。
  2. Deployment 后缀:这类 controller 不会直接地操作 Pod,它们通过操作一个或多个 Set 类型的 workload 来间接管理 Pod,比如 Deployment 管理 ReplicaSet 来提供一些额外的滚动策略,以及 UnitedDeployment 支持管理多个 StatefulSet/AdvancedStatefulSet 来将应用部署到不同的可用区。
  3. Job 后缀:这类 controller 主要管理短期执行的任务,比如 BroadcastJob 支持将任务类型的 Pod 分发到集群中所有 Node 上。
github.com/openkruise/kruise
    /pkg
        /client
        /controller         // 支持crd 对应实现
            /cloneset
                /cloneset_controller.go 
            /controllers.go     // 将各个Controller/Reconciler 实现注册到 Manager 中
        /webhook
    /main.go 

kubebuilder 脚手架生成的项目代码 一般假设只有一个crd 和Controller/Reconciler,因此main.go 的核心逻辑是: Reconciler 注册到Manager; Manager.Start。 对于kruise 来讲因为有多个 Controller,所以每一个controllr pkg 都实现了一个Add 方法负责 将自己注册到 Manager

阿里巴巴云原生应用安全防护实践与 OpenKruise 的新领域

其它

OpenKruise v0.9.0 版本发布:新增 Pod 重启、删除防护等重磅功能Pod 容器重启/重建;级联删除防护;配合原地升级的镜像预热;先扩再缩的 Pod 置换方式;sidecar 热升级功能 实现原理还挺好玩的。