前言
interface,接口,restful接口,SQL 也是一种接口
从编码的角度看:Interfaces give programs structure. Interfaces encourage design by composition. You must do your best to understand what could change and use interfaces to decouple.
Go 语言之父 Rob Pike 说过“接口越大,抽象程度越弱”。越偏向业务层,抽象难度就越高。所以Go 标准库小接口(1~3 个方法)占比略高于 Docker 和 Kubernetes 的原因。Go 接口是构建 Go 应用骨架(对应血肉)的重要元素。抽象的时机:在实际真正需要的时候才对程序进行抽象。再通俗一些来讲,就是不要为了抽象而抽象。接口的确可以实现解耦,但它也会引入“抽象”的副作用,或者说接口这种抽象也不是免费的,是有成本的,除了会造成运行效率的下降之外,也会影响代码的可读性。
- Go 不定义类,但允许将方法绑定到任何类型,包括结构、数组、slice、map 甚至是整数等基本类型。它没有类型的层次结构;我们认为继承往往会使程序在成长过程中更难适应。相反,Go 鼓励类型的组合。Go 通过其接口类型提供了面向对象的多态性。
- 避免接口和实现之间的显式关联允许 Go 程序员定义小的、灵活的、通常是 ad hoc 接口,而不是将它们用作复杂类型层次结构中的基础块。它鼓励在开发过程中捕获关系和操作,而不需要提前计划和定义它们。这尤其有助于大型程序,在这些程序中,刚开始开发时,最终的结构更加难以看清。无需声明实现的方式鼓励使用精确的、一种或两种方法的接口,例如 Writer、Reader、Stringer(类似于 Java 的 toString 方法)等,这些接口遍布标准库。PS: 因为鸭子,所以更容易设计的小一点?
Go 自定义类型系统
struct
我们编写程序的目的就是与真实世界交互,解决真实世界的问题,帮助真实世界提高运行效率与改善运行质量。所以我们就需要对真实世界事物体的重要属性进行提炼,并映射到程序世界中,这就是所谓的对真实世界的抽象。不同的数据类型具有不同的抽象能力,比如整数类型 int 可以用来抽象一个真实世界物体的长度,string 类型可以用来抽象真实世界物体的名字,等等。但是光有这些类型的抽象能力还不够,我们还缺少一种通用的、对实体对象进行聚合抽象的能力。你可以回想一下,我们目前可以用学过的各种类型抽象出书名、书的页数以及书的索引,但有没有一种类型,可以抽象出聚合了上述属性的“书”这个实体对象呢?有的。在 Go 中,提供这种聚合抽象能力的类型是结构体类型,也就是 struct。
结构体类型 在内存中布局是非常紧凑的,Go 为它分配的内存都用来存储字段了,没有被 Go 编译器插入的额外字段。但结构体字段实际上可能并不是紧密相连的,中间可能存在“缝隙”,是内存对齐的要求 Go 编译器插入的“填充物(Padding)。为什么会出现内存对齐的要求呢?这是出于对处理器存取数据效率的考虑。
interface
深度解密Go语言之关于 interface 的 10 个问题
Go 的类型系统不太常见,而且非常简单。内建类型包括结构体、函数和接口。 任何实现了接口的方法的类型都可以称为实现了该接口。类型可以被隐式的从表达式中推导, 而且不需要被显式的指定。 有关接口的特殊处理以及隐式的类型推导使得 Go 看起来像是一种轻量级的动态类型语言。
鸭子类型,是动态编程语言的一种对象推断策略,它更关注对象能如何被使用,而不是对象的类型本身。Go 语言作为一门现代静态语言,是有后发优势的。它引入了动态语言的便利,同时又会进行静态语言的类型检查。 Go是如何判断实现了interface鸭子类型使得开发者可以不使用继承体系来灵活地实现一些“约定”,尤其是使得混合不同来源、使用不同对象继承体系的代码成为可能。
一个语言的类型系统 经常需要 一个“地位超然”的类型,可以表示任何类型,比如void* 或者 Object, 但真正在使用这个 类型的变量时,需要判断其真实类型,在类型转换后才能使用,所以会有类型断言的需求。
func xx(p interface){
if v,ok := p.(string);ok{
xxx
}
switch v:=p.(type){
case int:
case string:
}
}
类型嵌入
类型嵌入的本质,就是嵌入类型的方法集合并入到新接口类型的方法集合中,并且,接口类型只能嵌入接口类型。可以是任意自定义类型或接口类型。结构体类型可以嵌入任意自定义类型或接口类型。
type S struct {
io.Reader
}
类型嵌入这种看似“继承”的机制,实际上是一种组合的思想。更具体点,它是一种组合中的代理(delegate)模式,S 只是一个代理(delegate),对外它提供了它可以代理的所有方法,如例子中的 Read 方法。当外界发起对 S 的 Read 方法的调用后,Go 会首先查看结构体自身是否实现了该方法,如果实现了,Go 就会优先使用结构体自己实现的方法。如果没有实现,那么 Go 就会查找结构体中的嵌入字段的方法集合中,是否包含了这个方法。将该调用委派给它内部的 Reader 实例来实际执行 Read 方法。
interface 底层实现
eface 和 iface
Go Data Structures: InterfacesLanguages with methods typically fall into one of two camps: prepare tables for all the method calls statically (as in C++ and Java), or do a method lookup at each call (as in Smalltalk and its many imitators, JavaScript and Python included) and add fancy caching to make that call efficient. Go sits halfway between the two: it has method tables but computes them at runtime. I don’t know whether Go is the first language to use this technique, but it’s certainly not a common one.
接口类型变量在运行时表示为 eface 和 iface:Go 使用 iface 结构体表示包含方法的接口;使用 eface(empty iface?) 结构体表示不包含任何方法的 interface{} 类型。
// $GOROOT/src/runtime/runtime2.go
type iface struct {
tab *itab // iface 除了要存储动态类型信息之外,还要存储接口本身的信息(接口的类型信息、方法列表信息等)以及动态类型所实现的方法的信息,因此 iface 的第一个字段指向一个itab类型结构。
data unsafe.Pointer // 指向当前赋值给该接口类型变量的动态类型变量的值。
}
type eface struct {
_type *_type // eface 表示的空接口类型并没有方法列表,因此它的第一个指针字段指向一个_type类型结构,这个结构为该接口类型变量的动态类型的信息
data unsafe.Pointer // 指向当前赋值给该接口类型变量的动态类型变量的值。
}
// $GOROOT/src/runtime/runtime2.go
type itab struct {
inter *interfacetype // 这个接口类型自身的信息
_type *_type // 接口类型变量的动态类型的信息
hash uint32 // copy of _type.hash. Used for type switches.
_ [4]byte
fun [1]uintptr // 动态类型已实现的接口方法的调用地址数组
}
// $GOROOT/src/runtime/type.go
type interfacetype struct {
typ _type // 接口类型自身的信息
pkgpath name // 包路径名
mhdr []imethod // 接口方法集合
}
虽然 eface 和 iface 的第一个字段有所差别,但 tab 和 _type 可以统一看作是动态类型的类型信息。Go 语言中每种类型都会有唯一的 _type 信息,无论是内置原生类型,还是自定义类型都有。Go 运行时会为程序内的全部类型建立只读的共享 _type 信息表,因此拥有相同动态类型的同类接口类型变量的 _type/tab 信息是相同的。
运行时类型结构(类似于jvm的kclass?)
type _type struct {
size uintptr
ptrdata uintptr // size of memory prefix holding all pointers
hash uint32
tflag tflag
align uint8
fieldAlign uint8
kind uint8 // 类型
// function for comparing objects of this type (ptr to object A, ptr to object B) -> ==?
equal func(unsafe.Pointer, unsafe.Pointer) bool
// gcdata stores the GC type data for the garbage collector. If the KindGCProg bit is set in kind, gcdata is a GC program. Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
gcdata *byte
str nameOff
ptrToThis typeOff
}
eface 内部结构
type Binary uint64
func main() {
b := Binary(200)
any := (interface{})(b)
fmt.Println(any)
}
iface 内部结构
type Binary uint64
func (i Binary) String() string {
return strconv.FormatUint(i.Get(), 10)
}
func (i Binary) Get() uint64 {
return uint64(i)
}
func main() {
b := Binary(200)
any := Stringer(b)
fmt.Println(any)
}
装箱
Interface values are represented as a two-word pair giving a pointer to information about the type stored in the interface and a pointer to the associated data. Assigning b to an interface value of type Stringer sets both words of the interface value.一个结构体实现了一个接口,把这个结构体变量赋值给这个接口变量,就是赋值这个接口变量里的俩指针,就完成了数据和实现的绑定。
Note that the itable corresponds to the interface type, not the dynamic type. In terms of our example, the itable for Stringer holding type Binary lists the methods used to satisfy Stringer, which is just String: Binary’s other methods (Get) make no appearance in the itable.itable(Stringer,Binary)
的方法表只包含 String 方法不包含 Get 方法。
any := Stringer(b)
用伪代码表示 就是
创建 iface struct for any
创建 itab struct
tab := getSymAddr(`go.itab.main.Binary,main.Stringer`).(*itab)
tab.inter = getSymAddr(`type.main.Stringer`).(*interfacetype)
tab._type = getSymAddr(`type.main.Binary`).(*_type)
tab.fun[0] = getSymAddr(`main.(*Binary).String`).(uintptr)
any.String()
相当于 any.tab->fun[0]
接口类型变量赋值是一个“装箱”的过程,实际就是创建一个 eface 或 iface 的过程。在将动态类型变量赋值给接口类型变量语句对应的汇编代码中,我们看到了convT2E和convT2I两个 runtime 包的函数。convT2E 用于将任意类型转换为一个 eface,convT2I 用于将任意类型转换为一个 iface。两个函数的实现逻辑相似,主要思路就是根据传入的类型信息(convT2E 的 _type 和 convT2I 的 tab._type)分配一块内存空间,并将 elem 指向的数据拷贝到这块内存空间中,最后传入的类型信息作为返回值结构中的类型信息,返回值结构中的数据指针(data)指向新分配的那块内存空间。
// $GOROOT/src/runtime/iface.go
func convT2E(t *_type, elem unsafe.Pointer) (e eface) {
if raceenabled {
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E))
}
if msanenabled {
msanread(elem, t.size)
}
x := mallocgc(t.size, t, true)
typedmemmove(t, x, elem)
e._type = t
e.data = x
return
}
func convT2I(tab *itab, elem unsafe.Pointer) (i iface) {
t := tab._type
if raceenabled {
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I))
}
if msanenabled {
msanread(elem, t.size)
}
x := mallocgc(t.size, t, true)
typedmemmove(t, x, elem)
i.tab = tab
i.data = x
return
}
不过,装箱操作是由 Go 编译器和运行时共同完成的,有一定的性能开销,因此 Go 也在不断对装箱操作进行优化,包括对常见类型如整型、字符串、切片等提供系列快速转换函数。这些函数去除了 typedmemmove 操作,增加了零值快速返回等特性。同时 Go 建立了 staticuint64s 区域,对 255 以内的小整数值进行装箱操作时不再分配新内存,而是利用 staticuint64s 区域的内存空间。PS: 有点Java的意思了。
C++ 和 Go 在定义接口方式上的不同,也导致了底层实现上的不同。C++ 通过虚函数表来实现基类调用派生类的函数;而 Go 通过 itab 中的 fun 字段来实现接口变量调用实体类型的函数。C++ 中的虚函数表是在编译期生成的;而 Go 的 itab 中的 fun 字段是在运行期间动态生成的。
interface{} 不是任意类型
package main
type TestStruct struct{}
func NilOrNot(v interface{}) bool {
return v == nil
}
func main() {
var s *TestStruct
fmt.Println(s == nil) // #=> true
fmt.Println(NilOrNot(s)) // #=> false
}
出现上述现象的原因是 —— 调用 NilOrNot 函数时发生了隐式的类型转换,除了向方法传入参数之外,变量的赋值也会触发隐式类型转换。在类型转换时,*TestStruct
类型会转换成 interface{}
类型,转换后的变量(eface struct)不仅包含转换前的变量,还包含变量的类型信息 TestStruct,所以转换后的变量与 nil 不相等。
变量的赋值、向方法传入参数会触发隐式类型转换,类型转换的情况比较多:
- 同一类型的转换,比如int64与int
- 某类型与字符串的转换,这个有专门的包
- 字符串与字符/short数组的转换,比如string与
[]uint8
等 - 具体类型转换成接口类型。
类型断言是,一个大类型,比如interface{}
,怀疑它可能是字符串,则可以xxx.(string)
等值比较操作
而接口类型变量的 data 部分则是指向一个动态分配的内存空间,这个内存空间存储的是赋值给接口类型变量的动态类型变量的值。也就是说,我们判断两个接口类型变量是否相同,只需要判断 _type/tab 是否相同,以及 data 指针指向的内存空间所存储的数据值是否相同就可以了。这里要注意不是 data 指针的值相同噢。在创建 eface 时一般会为 data 重新分配新内存空间,将动态类型变量的值复制到这块内存空间,并将 data 指针指向这块内存空间。因此我们多数情况下看到的 data 指针值都是不同的。
由于 eface 和 iface 是 runtime 包中的非导出结构体定义,我们不能直接在包外使用,所以也就无法直接访问到两个结构体中的数据。不过,Go 语言提供了 println 预定义函数,可以用来输出 eface 或 iface 的两个指针字段的值。在编译阶段,编译器会根据要输出的参数的类型将 println 替换为特定的函数,这些函数都定义在$GOROOT/src/runtime/print.go文件中,而针对 eface 和 iface 类型的打印函数实现如下:
// $GOROOT/src/runtime/print.go
func printeface(e eface) {
print("(", e._type, ",", e.data, ")")
}
func printiface(i iface) {
print("(", i.tab, ",", i.data, ")")
}
反射
深度解密GO语言之反射反射的本质是程序在运行期探知对象的类型信息和内存结构(泛化一点说,就是我想知道某个指针对应的内存里有点什么),不用反射能行吗?可以的!使用汇编语言,直接和内层打交道,什么信息不能获取?但是,当编程迁移到高级语言上来之后,就不行了!就只能通过反射来达到此项技能。
reflect 包里定义了一个接口reflect.Type
和一个结构体reflect.Value
,它们提供很多函数来获取存储在接口里的类型信息,反射包中的所有方法基本都是围绕着 Type 和 Value 这两个类型设计的。reflect.Type
主要提供关于类型相关的信息,所以它和 _type 关联比较紧密; reflect.Value
则结合 _type
和 data 两者,因此程序员可以获取甚至改变类型的值。
TypeOf
TypeOf 函数用来提取一个接口中值的类型信息。由于它的输入参数是一个空的 interface{}
,调用此函数时,实参会先被转化为 interface{}
类型。这样,实参的类型信息、方法集、值信息都存储到 interface{}
变量里了。
func TypeOf(i interface{}) Type{
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return toType(eface.typ)
}
func toType(t *rtype) Type {
if t == nil {
return nil
}
return t
}
ValueOf
reflect.Value 表示 interface{} 里存储的实际变量,它能提供实际变量的各种信息。相关的方法常常是需要结合类型信息和值信息。例如,如果要提取一个结构体的字段信息,那就需要用到 _type (具体到这里是指 structType) 类型持有的关于结构体的字段信息、偏移信息,以及 *data
所指向的内容 —— 结构体的实际值。
func ValueOf(i interface{}) Value {
if i == nil {
return Value{}
}
escapes(i)
return unpackEface(i)
}
func unpackEface(i interface{}) Value {
e := (*emptyInterface)(unsafe.Pointer(&i))
t := e.typ
if t == nil {
return Value{}
}
f := flag(t.Kind())
if ifaceIndir(t) {
f |= flagIndir
}
return Value{t, e.word, f}
}
通过 Type() 方法和 Interface() 方法可以打通 interface、 Type、 Value 三者。Type() 方法也可以返回变量的类型信息,与 reflect.TypeOf() 函数等价。Interface() 方法可以将 Value 还原成原来的 interface。
- 按名字访问结构的成员
reflect.ValueOf(e).FieldByName("Name")
- 按名字访问结构的方法
reflect.ValueOf(e).methodByName("updateAge").Call(args)
三大定律
反射建立在类型系统之上,以java 视角来表述的话,反射为程序提供了部分操作 jvm 数据的能力。
- Reflection goes from interface value to reflection object. 我们能将 Go 语言的
interface{}
变量转换成反射对象。为什么是从interface{}
变量到反射对象?当我们执行reflect.ValueOf(1)
时,虽然看起来是获取了基本类型 int 对应的反射类型,但是由于reflect.TypeOf
、reflect.ValueOf
两个方法的入参都是interface{}
类型,所以在方法执行的过程中发生了类型转换。 - Reflection goes from reflection object to interface value. 我们可以从反射对象可以获取
interface{}
变量(Interface()
方法)。 - To modify a reflection object, the value must be settable.如果需要操作一个反射变量,那么它必须是可设置的。PS: 可设置 ==> 可以找到原变量地址 ==> go 是值传递 ==>
reflect.ValueOf(引用)
反射变量 Value 必须要 hold 住原变量的地址才行
与java 对比
hotspot 内部c++对java 对象的表示
java中的反射,设计思路是,先类型后值。意思是,无论如何,都是先找到属性和方法的描述,然后根据描述来获取属性的值、调用方法的执行。要进行这样的操作,入口都是由类的描述开始。
Class cls = obj.getClass();
Constructor constructor = cls.getConstructor();
Method[] methods = cls.getDeclaredFields();
golang设计思路为,值和类型划分的非常清晰,两条腿走路。Go 没有类的概念,并且结构体只包含了已声明的字段。因此,我们需要借助“reflection”包来获得所需的信息
java | go | |
---|---|---|
获取对象的类型/表示 | getClass() |
objType := reflect.TypeOf(obj) |
获取对象的值/表示 | 不支持 | objValue := reflect.ValueOf(obj) |
获取属性描述 | getClass().getField("fieldName") |
objType.Field(index) |
获取属性的值 | field.get(obj) |
objValue.Filed(index).Interface() |
获取方法的描述 | getClass().getMethod("methodName") |
objType.Method(index) |
方法调用 | method.invoke(obj, args) |
objValue.Method(index).Call(args) |
在java中,通过类的描述,来获得method,由于该method是属于类级别的,所以,调用时,需要传入参数obj和args;而golang中,method是对象级别的,所以,调用时,不需要参数obj,只需要args。