Technology

Chart Type 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

Architecture

实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列


kafka实践

2019年05月09日

前言

Kafka 使用 Scala 和 Java 语言开发,设计上大量使用了批量和异步的思想,这种设计使得 Kafka 能做到超高的性能。Kafka 的性能,尤其是异步收发的性能是Rabbitmq/Kafka/Rocketmq中最好的。这种异步批量的设计带来的问题是,它的同步收发消息的响应时延比较高,因为当客户端发送一条消息的时候,Kafka 并不会立即发送出去,而是要等一会儿攒一批再发送。在服务端,Kafka 不会把一批消息再还原成多条消息,再一条一条地处理,这样太慢了。Kafka 这块儿处理的非常聪明,每批消息都会被当做一个“批消息”来处理。也就是说,在 Broker 整个处理流程中,无论是写入磁盘、从磁盘读出来、还是复制到其他副本这些流程中,批消息都不会被解开,一直是作为一条“批消息”来进行处理的。

重新理解kafka

Apache Kafka 是消息引擎系统,也是一个分布式流处理平台(Distributed Streaming Platform)

官网上明确标识 Kafka Streams 是一个用于搭建实时流处理的客户端库而非是一个完整的功能系统。这就是说,你不能期望着 Kafka 提供类似于集群调度、弹性部署等开箱即用的运维特性。坦率来说,这的确是一个“双刃剑”的设计,也是 Kafka 社区“剑走偏锋”不正面 PK 其他流计算框架的特意考量。大型公司的流处理平台一定是大规模部署的,因此具备集群调度功能以及灵活的部署方案是不可或缺的要素。但毕竟这世界上还存在着很多中小企业,它们的流处理数据量并不巨大,逻辑也并不复杂,部署几台或十几台机器足以应付。

kafka 较新的1.0 和 2.0 也主要集中于kafka streams的改进。

消费端优化

多线程 消费

spring kafka 源码分析 可以看到, spring-kafka 仅使用了一个线程来 操作consumer 从broker 拉取消息,一个线程够用么? 是否可以通过加线程 提高consumer的消费能力呢?

【原创】探讨kafka的分区数与多线程消费 一个消费线程可以对应若干个分区,但一个分区只能被一个KafkaConsumer对象 消费 + KafkaConsumer 对象是线程不安全的==> 一个分区只能被具体某一个线程消费。因此,topic 的分区数必须大于一个(由server.properties 的 num.partitions 控制),否则消费端再怎么折腾,也用不了多线程。

Kafka主动检测不支持的情况并抛出异常,避免系统产生不可预期的行为。下列代码展示了KafkaConsumer 如何进行并发检测

public class KafkaConsumer<K, V> implements Consumer<K, V> {
    private static final long NO_CURRENT_THREAD = -1L;
    // currentThread holds the threadId of the current thread accessing KafkaConsumer
    // and is used to prevent multi-threaded access
    private final AtomicLong currentThread = new AtomicLong(NO_CURRENT_THREAD);
    public void subscribe(Collection<String> topics, ConsumerRebalanceListener listener) {
        acquire();
        try {
            if (topics == null) {
                throw new IllegalArgumentException("Topic collection to subscribe to cannot be null");
            } else if (topics.isEmpty()) {
                // treat subscribing to empty topic list as the same as unsubscribing
                this.unsubscribe();
            } else {
                for (String topic : topics) {
                    if (topic == null || topic.trim().isEmpty())
                        throw new IllegalArgumentException("Topic collection to subscribe to cannot contain null or empty topic");
                }
                log.debug("Subscribed to topic(s): {}", Utils.join(topics, ", "));
                this.subscriptions.subscribe(new HashSet<>(topics), listener);
                metadata.setTopics(subscriptions.groupSubscription());
            }
        } finally {
            release();
        }
    }
    private void acquire() {
        ensureNotClosed();
        long threadId = Thread.currentThread().getId();
        if (threadId != currentThread.get() && !currentThread.compareAndSet(NO_CURRENT_THREAD, threadId))
            throw new ConcurrentModificationException("KafkaConsumer is not safe for multi-threaded access");
        refcount.incrementAndGet();
    }
}

【原创】Kafka Consumer多线程实例KafkaConsumer和KafkaProducer不同,后者是线程安全的,因此我们鼓励用户在多个线程中共享一个KafkaProducer实例,这样通常都要比每个线程维护一个KafkaProducer实例效率要高。但对于KafkaConsumer而言,它不是线程安全的,所以实现多线程时通常由两种实现方法:

  1. 每个线程维护一个KafkaConsumer,多个consumer 可以subscribe 同一个topic consumer.subscribe(Arrays.asList(topic));,如果consumer的数量大于Topic中partition的数量就会有的consumer接不到数据。

  2. 维护一个或多个KafkaConsumer,同时维护多个事件处理线程(worker thread)

多线程消费的变迁

Why We Replaced Our Kafka Connector with a Kafka Consumer 结合kafka 源码中 ConsumerConnector 被标记为Deprecated 来看,kafka的消费端一开始用的是 ConsumerConnector,现在开始推荐使用 KafkaConsumer

Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
	// 一个Topic启动几个消费者线程,会生成几个KafkaStream。
topicCountMap.put(topic, new Integer(KafkaStream的数量));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
	List<KafkaStream<byte[], byte[]>> topicList = consumerMap.get(topic);
	for (KafkaStream<byte[], byte[]> kafkaStream : topicList) {  
			ConsumerIterator<byte[], byte[]> it = stream.iterator();
			while (it.hasNext()) {
					System.out.println("Receive->[" + new String(it.next().message()) + "]");
			}
	}

Kafka 0.8 Consumer处理逻辑

fetcher线程数和topic所在多少台broker有关。一个Topic启动几个消费者线程,会生成几个KafkaStream。一个KafkaStream对应的是一个Queue(有界的LinkedBlockingQueue)

重启项目导致rebalance

所以要处理三种情况

  1. consumer 多于 partition,不推荐,会有consumer 空闲
  2. consumer 等于 partition,这是理想的情况
  3. consumer 小于 partition

比如重新部署3个实例,每个实例的离开和joinGroup 会引起6次rebalance,rebalance 造成消费中断。

  1. 提高心跳时长,consumer instance重启完 broker都不知道重启了
  2. 减少一个topic partition的数量

直接重启一次很快,但是发布就有点慢? ==> 重启的时候无需拷贝war包,tomcat 可以立即启动,发布的时候,cmdb 要从跳板机(jenkins会把war包发到跳板机上)把war包拷贝到各个目标机器上 ==> 有一个时间,在这个时间内重启一遍引起的reblance较少,而超过这个时间引起的rebalance 时间较长 ==> 两个办法:找到这个时间,貌似是心跳时长,延长它;并行发布项目(6个实例一起拷贝war包并重启tomcat,cmdb有这个功能)

Kafka Streams error - Offset commit failed on partition, request timed out

Kafka Streams error - Offset commit failed on partition, request timed out

消费进度的监控

对于 Kafka 消费者来说,最重要的事情就是监控它们的消费进度了,或者说是监控它们消费的滞后程度。这个滞后程度有个专门的名称:消费者 Lag 或 Consumer Lag。

由于消费者的速度无法匹及生产者的速度,极有可能导致它消费的数据已经不在操作系统的页缓存中了,那么这些数据就会失去享有 Zero Copy 技术的资格。这样的话,消费者就不得不从磁盘上读取它们,这就进一步拉大了与生产者的差距,进而出现马太效应

监控消费进度的3个方法

  1. 使用kafka 自带的命令行工具kafka-consumer-groups.sh
  2. 使用java consumer api编程
  3. 使用kafka 自带的JMX 监控指标

生产端优化

分区策略

  1. 轮询
  2. 随机
  3. Kafka 允许为每条消息定义消息键,简称为 Key,一旦消息被定义了 Key,那么你就可以保证同一个 Key 的所有消息都进入到相同的分区里面
  4. 其它,比如基于地理位置的分区策略

通用优化

拦截器

其基本思想就是允许应用程序在不修改逻辑的情况下,动态地实现一组可插拔的事件处理逻辑链。

Kafka 拦截器分为生产者拦截器和消费者拦截器。可以应用于包括客户端监控、端到端系统性能检测、消息审计等多种功能在内的场景。

重要的配置

要修改默认值的参数

  1. log.dirs,这个参数是没有默认值的,必须由你亲自指定,值是用逗号分隔的多个路径,最好保证这些目录挂载到不同的物理磁盘上,有两个好处

    1. 比起单块磁盘,多块物理磁盘同时读写数据有更高的吞吐量
    2. 能够实现故障转移:即 Failover。这是 Kafka 1.1 版本新引入的强大功能。
  2. zookeeper.connect
  3. auto.create.topics.enable:是否允许自动创建 Topic,建议最好设置成 false,每个部门被分配的 Topic 应该由运维严格把控
  4. log.retention.{hour|minutes|ms}:这是个“三兄弟”,都是控制一条消息数据被保存多长时间。从优先级上来说 ms 设置最高、minutes 次之、hour最低。默认保存 7 天的数据
  5. log.retention.bytes:这是指定 Broker 为消息保存的总磁盘容量大小。这个值默认是 -1,表明你想在这台 Broker 上保存多少数据都可以。这个参数对多租户场景特别有用。
  6. message.max.bytes:控制 Broker 能够接收的最大消息大小。默认的 1000012 太少了,还不到 1MB。实际场景中突破 1MB 的消息都是屡见不鲜的。这个可以依据topic 进行个性化设置

其它

  1. kafka 的版本号分为两个部分:编译 Kafka 源代码的 Scala 编译器版本;kafka 自身版本。

其它材料

快手万亿级别Kafka集群应用实践与技术演进之路